Minggu, 15 Oktober 2017

Alkil halida: reaksi subsitusi dan elimiminasi




Alkil halida: reaksi subsitusi dan elimiminasi
Tipe senyawa organohalogen
Senyawa yang hanya mengandung C, H, dan suatu halogen ( X ) dapat dikategorikan menjadi :
1. Alkil halida ( RX )
Alkil halida merupakan senyawa hidrokarbon yang mana salah satu atom hidrogennya digantikan oleh atom halogen ( halogen yang terikat pada atom karbon yang berikatan tunggal ).
Contoh : CH3I, CH3CH2Cl
              Iodometana, kloroetana
2. Aril halida ( ArX )
Aril halide adalah halogen yang terikat pada atom karbon dari cincin aromatik.
Contoh : Bromobenzena
3. Halida vinilik
Halida Vinilik adalah halogen yang terikat pada atom karbon ( C ) yang berikatan rangkap.
Contoh : CH2=CHCl ( kloro etena )
Alkil = R, Aril = Ar, Halida = X

Ikatan zigma karbon – halogen
Ikatan ini terbentuk oleh silang mendidihnya suatu orbital atom halogen dan orbital hibrida atom karbon
Atom- atom halogen ( F, Cl, Br ) bersifat elektronegatif terhadap karbon. Sementara keelektronegatifan Iod dekat dengan Karbon sehingga ion Iod mudah dipolarisasi yang mengakibatkan alkil halida bersifat polar.
SIFAT FISIS ALKANA TERHALOGENASIKAN
Jika atom halogen disubstitusi ke molekul hidrokarbon maka bobot molekul akan naik karena atom halogen mempunyai berat yang lebih besar dibanding atom karbon ataupun atom hydrogen ( penyusun senyawa hidrokarbon) dan polarizabilitas bertambah ( yang menyebebkan tarikan van der waals meningkat ) sehingga titik didih suatu deret senyawa naik.
Contoh : CH3Cl2Cl234
Hidrokarbon terhalogenasikan tidak membentuk ikatan hidrogen dan tidak larut dalam air. Kebanyakan senyawa organik lebih ringan dari air, namun pelarut berhalogen ( seperti (CHCl3, CH2Cl2 ) lebih berat dari air.
TATA NAMA & KLASIFIKASI ALKIL HALIDA
Pemberian nama alkil halida dapat dilakukan dengan dua cara, yaitu :
  • Sistem IUPAC
Alkil halida diberi nama dengan awalan halo-
Contoh : CH3Cl = Cloro Metana
CCl4 = Tetra Cloro Metana
  • Gugus-fungsional trivial
Pemberian nama alkil halida diawali dengan gugus alkil, diikuti nama halidanya.
Tipe alkil halida berhasarkan struktur bagian alkilnya dapat dibagi menjadi empat yaitu metil, primer, sekunder, tersier.
*Metil Halida ( RX ) : satu hidrogen dari metana digantikan oleh sebuah halogen.
Contoh : CH3F, CH3Cl, CH3Br
*Alkil Halida Primer (1°) ( RCH2X ) : punya 1 gugus alkil terikat pada karbon ujung.
Contoh : CH3-CH2Br
*Alkil Halida Sekunder (2°) ( R2CHX ) : punya dua gugus alkil terikat pada karbon ujung.
Contoh : CH3CH2-CH-Cl
I
CH3
*Alkil Halida Tersier (3°) (R3CX ) : punya 3 gugus alkil terikat pada karbon ujung.
Contoh : CH3
I
CH3--C--Cl
I
CH3
Karbon Ujung
Karbon ujung adalah karbon yang terikat pada halogen.
Contoh : (CH3)3C - CH2Cl
C : karbon ujung

REAKSI SUBSTITUSI
Reaksi substitusi adalah reaksi dimana atom, ion, atau gugus menggantikan atom, ion, atau gugus lainnya. Karbon ujung suatu alkil halida bermuatan positif parsial.
Contoh : .. ∂+ .. ∂- .. ..
HO:ˉ + CH3CH2 - :Br: → CH3CH2-OH+:Br:ˉ
¨ ¨ ¨ ¨
Halida disebut gugus pergi ( leaving group ). Halida merupakan gugus pergi yang baik karena ion – ion ini merupakan basa yang sangat lemah. Beda halnya dengan OH¯ yang merupakan basa kuat, sehingga OH¯ bukan gugus pergi yang baik.
Fˉ basa yang lebih kuat dari ion halida lainnya, ikatan C-F lebih kuat C-X, sehingga F bukan gugus pergi yang baik. Jadi halida yang merupakan gugus pergi yang baik adalah Cl, Br, dan I.
Nukleofil ( Nuˉ )
Nukleofil merupakan spesi yang menyerang suatu alkil halida dalam reaksi substitusi atau spesi yang tertarik ke pusat positif ( basa lewis ).
Contoh : OHˉ, CH3Oˉ, H2O, CH3OH, CH3NH3
Kebanyakan nukleofil adalah anion, namun beberapa molekul polar yang netral dapat bertindak sebagai nukleofil. Molekul netral tersebut mempunyai pasangan elektron menyendiri yang digunakan untuk membentuk ikatan sigma.
Elektrofil ( E+)
Elektrofil merupakan spesi apa saja yang tertarik ke suatu pusat negatif ( asam lewis )
Contoh : H+, ZnCl2
atom karbon ujung suatu alkil halida mempunyai muatan positif parsial. karbon ini rentan terhadap susceptible atau mudah diserang oleh anion dan spesi lain apa saja yang mempunyai spesi elektron yang menyendiri (unshared) dalam kulit luarnya.diahsilkan suatu subsitusi suatu reaksi dimana satu atom ion, ion atau gugus disubsitusikan untuk menggantikan atom, ion atau gugus lain.
Reaksi Substitusi pada Senyawa Hidrokarbon

Reaksi substitusi merupakan reaksi penggantian gugus fungsi (atom atau molekul) yang terikat pada atom C suatu senyawa hidrokarbon.

Pada reaksi halogenasi alkana, atom hidrogen yang terikat pada atom C senyawa alkana digantikan dengan atom halogen. Ketika campuran metana dan klorin dipanaskan hingga 100°C atau radiasi oleh sinar UV maka akan dihasilkan senyawa klorometana, seperti reaksi berikut.


100 °C

CH4(g) + Cl2(g)
CH3Cl(g) + HCl(g)

Jika gas klorin masih tersedia dalam campuran, reaksinya akan berlanjut seperti berikut.
CH3Cl(g) + Cl2(g)
CH2Cl2(g) + HCl(g)

100 °C

CH2Cl2(g) + Cl2(g)
CHCl3(g) + HCl(g)

100 °C

CHCl3(g) + Cl2(g)
CCl4(g) + HCl(g)

Reaksi substitusi tersebut digunakan dalam pembuatan senyawa diklorometana. Jika reaksi dilakukan pada senyawa etana, reaksi akan menghasilkan dikloroetana. Diklorometana digunakan untuk pengelupasan cat, sedangkan triklorometana digunakan untuk dry–clean.
1.                  Reaksi Substitusi Nukleofilik (SN)

Suatu nukleofil (Z:) menyerang alkil halida pada atom karbon hibrida-sp3 yang mengikat halogen (X), menyebabkan terusirnya halogen oleh nukleofil. Halogen yang terusir disebut gugus pergi. Nukleofil harus mengandung pasangan elektron bebas yang digunakan untuk membentuk ikatan baru dengan karbon. Hal ini memungkinkan gugus pergi terlepas dengan membawa pasangan elektron yang tadinya sebagai elektron ikatan. Ada dua persamaan umum yang dapat dituliskan:
  
Contoh masing-masing reaksi adalah:



2.                  Mekanisme Reaksi Substitusi Nukleofilik

Pada dasarnya terdapat dua mekanisme reaksi substitusi nukleofilik. Mereka dilambangkan dengan SN2 adan SN1. Bagian SN menunjukkan substitusi nukleofilik, sedangkan arti 1 dan 2 akan dijelaskan kemudian. 
A.   Reaksi SN2 Mekanisme SN2 adalah proses satu tahap yang dapat digambarkan sebagai berikut:


Nukleofil menyerang dari belakang ikatan C-X. Pada keadaan transisi, nukleofil dan gugus pergi berasosiasi dengan karbon di mana substitusi akan terjadi. Pada saat gugus pergi terlepas dengan membawa pasangan elektron, nukleofil memberikan pasangan elektronnya untuk dijadikan pasangan elektron dengan karbon. Notasi 2 menyatakan bahwa reaksi adalah bimolekuler, yaitu nukleofil dan substrat terlibat dalam langkah penentu kecepatan reaksi dalam mekanisme reaksi. Adapun ciri reaksi SN2 adalah: 
1. Karena nukleofil dan substrat terlibat dalam langkah penentu kecepatan reaksi, maka kecepatan reaksi tergantung pada konsentrasi kedua spesies tersebut. 
2. Reaksi terjadi dengan pembalikan (inversi) konfigurasi. Misalnya jika kita mereaksikan (R)-2-bromobutana dengan natrium hidroksida, akan diperoleh (S)-2-butanol.Ion hidroksida menyerang dari belakang ikatan C-Br. Pada saat substitusi terjadi, ketiga gugus yang terikat pada karbon sp3 kiral itu seolah-olah terdorong oleh suatu bidang datar sehingga membalik. Karena dalam molekul ini OH mempunyai perioritas yang sama dengan Br, tentu hasilnya adalah (S)-2-butanol. Jadi reaksi SN2 memberikan hasil inversi. 
3. Jika substrat R-L bereaksi melalui mekanisme SN2, reaksi terjadi lebih cepat apabila R merupakan gugus metil atau primer, dan lambat jika R adalah gugus tersier. Gugus R sekunder mempunyai kecepatan pertengahan. Alasan untuk urutan ini adalah adanya efek rintangan sterik. Rintangan sterik gugus R meningkat dari metil < primer < sekunder < tersier. Jadi kecenderungan reaksi SN2 terjadi pada alkil halida adalah: metil > primer > sekunder >> tersier.

B. Reaksi SN1 Mekanisme SN1 dalah proses dua tahap. Pada tahap pertama, ikatan antarakarbon dengan gugus pergi putus. 


Gugus pergi terlepas dengan membawa pasangan elektron, dan terbentuklah ion karbonium. Pada tahap kedua (tahap cepat), ion karbonium bergabung dengan nukleofil membentuk produk
 

Pada mekanisme SN1, substitusi terjadi dalam dua tahap. Notasi 1 digunakan sebab pada tahap lambat hanya satu dari dua pereaksi yang terlibat, yaitu substrat. Tahap ini sama sekali tidak melibatkan nukleofil.

Berikut ini adalah ciri-ciri suatu reaksi yang berjalan melalui mekanisme SN1:

1. Kecapatan reaksinya tidak tergantung pada konsentrasi nukleofil. Tahap penentu kecepatan reaksi adalah tahap pertama di mana nukleofil tidak terlibat.

2. Jika karbon pembawa gugus pergi adalah bersifat kiral, reaksi menyebabkan hilangnya aktivitas optik karena terjadi rasemik. Pada ion karbonium, hanya ada a gugus yang terikat pada karbon positif. Karena itu, karbon positif mempunyai hibridisasi sp2 dan berbentuk planar. Jadi nukleofil mempunyai dua arah penyerangan, yaitu dari depan dan dari belakang. Dan kesempatan ini masing-masing mempunyai peluang 50 %. Jadi hasilnya adalah rasemit. Misalnya, reaksi (S)-3-bromo-3-metilheksana dengan air menghasilkan alkohol rasemik.

Spesies antaranya (intermediate species) adalah ion karbonium dengan geometrik planar sehingga air mempunyai peluang menyerang dari dua sisi (depan dan belakang) dengan peluang yang sama menghasilkan X yang melalui mekanisme SN1-adalah campuran rasemik Reaksi substrat R akan berlangsung cepat jika R merupakan struktur tersier, dan lambat jika R adalah struktur primer. Hal ini sesuai dengan urutan kestabilan ion karbonium, 3o > 2o >> 1o.



REAKSI ELIMINASI
Bila suatu alkil halida diolah dengan suatu basa kuat, dapat terjadi suatu reaksi eliminiasi. Dalam reaksi ini sebuah molekul kehilangan atom-atom atau ion-ion dari dalam strukturnya. Produk organik suatu reaksi eliminasi suatu alkil halida adalah suatu alkena. Dalam tipe reaksi eliminasi ini, unsur h dan x keluar dalam alkil halida.
..
:Br: H
I I .. .. ..
CH3—CH—CH2 + :OH → CH3CH=CH2 +H2O + :Br:ˉ
¨ ¨ ¨
2 – bromopropana propena
Å€Reaksi eliminasi dapat diperoleh dengan mereaksikan alkil halida dengan basa kuat. Pada reaksi ini terjadi kehilangan atom – atom atau ion – ion dari dalam strukturnya. Produk reaksi eliminasi adalah alkena. Pada reaksi tersebut, unsur H dan X keluar dari alkil halida ( reaksi dehidrohalogenasi ).
Reaksi Eliminasi pada Senyawa Hidrokarbon

Reaksi eliminasi merupakan reaksi kebalikan dari reaksi adisi. Reaksi eliminasi melibatkan pelepasan atom atau gugus atom dari sebuah molekul membentuk molekul baru. Contoh reaksi eliminasi adalah eliminasi etil klorida menghasilkan etana dan asam klorida.

C2H5Cl(aq) → C2H4(aq) + HCl(aq)

Reaksi eliminasi terjadi pada senyawa jenuh (tidak memiliki ikatan rangkap) dan menghasilkan senyawa tak jenuh (memiliki ikatan rangkap).
3.      Reaksi eliminasi, yaitu pelepasan atom atau gugus atom.

Merupakan reaksi samping pada reaksi substitusi, dikenal dengan eliminsi E1 dan E2.

a.       Mekanisme reaksi E1

Mekanisme reaksi E1 merupakan alternatif dari mekanisme reaksi SN1. Karbokation dapat memberikan sebuah proton kepada suatu basa dalam reaksi eliminasi. Mekanisme reaksi E1 terdiri dari dua tahap. Perhatikan contoh berikut :

Tahap 1.

Tahap 1 reaksi E1 berjalan lambat.
 
Tahap 2.

Tahap 2 reaksi E1 berjalan cepat.
 
Mekanisme reaksi E2 
Reaksi E2 menggunakan basa kuat seperti OHˉ, ORˉ, dan juga membutuhkan kalor. Dengan memanaskan alkil halida dalam KOH, CH3CH2ONa.


Permasalahannya : 
Dari uraian diatas jika kekuatan nukleofil juga dapat mengubah mekanisme reaksi yang dilalui oleh reaksi SN. Jika nukleofilnya kuat maka mekanisme SN2 yang terjadi. Bagaimana mengetahui apakah suatu nukleofil adalah kuat atau lemah? Mohon bantuannya teman teman, terimakasih.

Daftar pustaka
 
          Fessenden. 2005. Kimia Organik Edisi Ketiga. Jakarta:Erlangga

6 komentar:

  1. Hidrokarbon terhalogenasikan tidak membentuk ikatan hidrogen dan tidak larut dalam air. jelaskan kenapa itu bisa terjadi ??

    BalasHapus
  2. apa yang membedakan Mekanisme reaksi E1
    dengan reaksi E2 ?

    BalasHapus
  3. Tolong jelaskan perbedaan dan persamaan antara alkil halida dengan aril halida. Terima kasih

    BalasHapus
  4. Saya akan menambahkan sedikit, jenis reaksi eliminasi berdasarkan kedudukan H yang tereliminasi ada 2, yaitu:

    1. Reaksi Eliminasi β
    Reaksi β-eliminasi merupakan reaksi eliminasi dimana unsur H yang dihilangkan terletak pada kedudukan atom karbon β terhadap halogen

    2. Reaksi Eliminasi α
    Reaksi eliminasi α merupakan reaksi pemutusan atau lepasnya unsur H dan X dari suatu alkil halida yang berada pada posisi atom karbon-alpha

    BalasHapus
    Balasan
    1. Terimakasih saudari siti naslikah atas penambahannya.

      Hapus
  5. mengapa reaksi eliminasi hanya terjadi pada senyawa jenuh? tolong jelaskan.

    BalasHapus